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RESUMO

BATISTA, L. B. N. Geometria de um q-bit. 2023. 25p. Trabalho de conclusão de
curso - Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, 2023.

Um q-bit pode ser entendido como um sistema quântico de dois níveis, cuja representação
tradicional é um vetor de estado no espaço de Hilbert, e operações reversíveis sobre
q-bits são implementadas a partir de transformações unitárias. Neste trabalho, o objetivo
é estudar essas operações sob um ponto de vista geométrico, aplicando ferramentas
conhecidas da geometria riemanniana para o entendimento de sistemas quânticos. Dada
a representação na esfera de Bloch, as operações unitárias sobre q-bits aparecem agora
como rotações que ligam um estado a outro de forma que, com a introdução de uma
métrica adequada, é possível estudar um problema fundamental da análise de complexidade
computacional: a relação entre o menor caminho entre dois estados com a dificuldade de
implementar a operação unitária associada a essa transformação. Veremos que a esfera
de Bloch é deformada conforme variamos os parâmetros da métrica definida, tornando
algumas rotações mais favoráveis em detrimento de outras. Por fim, citaremos alguns
pontos nos quais a análise de sistemas de um único q-bit, embora rica e desafiadora, deixa
a desejar quando comparada com a de sistemas de múltiplos q-bits.

Palavras-chave: q-bit. Transformação unitária. Esfera de Bloch. Rotações. Métrica.
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1 INTRODUÇÃO

Inspirado na Ref. (1), é possível definir um q-bit como um objeto matemático,
mais especificamente um vetor, que faz parte de um espaço vetorial complexo de dimensão
2, o espaço de Hilbert H 2D. Como esse espaço tem d = dim(H) = 2, define-se uma
base ortonormal {|0⟩, |1⟩}, a chamada base computacional – uma referência aos bits da
computação clássica: 0 e 1 –, tal que qualquer elemento |ψ⟩ ∈ H pode ser escrito como

|ψ⟩ = a0 |0⟩ + a1 |1⟩ , (1.1)

com a0, a1 ∈ C e |a0|2+|a1|2 = 1, representando a normalização de |ψ⟩. Outra representação
bastante comum na literatura para |ψ⟩ é a de vetor coluna

|ψ⟩ =
a0

a1



tal que |0⟩ =
1

0

 e |1⟩ =
0

1

. Esse tipo de representação é mais útil para boa parte dos

propósitos operacionais presentes nesse trabalho, sobretudo no tratamento de rotações.
Outra base ortonormal comumente utilizada é a base de Hadamard (2) {|+⟩, |−⟩}, de

forma que |+⟩ = |0⟩ + |1⟩√
2

e |−⟩ = |0⟩ − |1⟩√
2

. Essa base recebe esse nome devido às relações:
|+⟩ = H |0⟩ e |−⟩ = H |1⟩, donde H é a transformação implementada pela chamada porta
Hadamard. Mais sobre portas quânticas e as transformações realizadas por elas será visto
na seção seguinte.

Fisicamente, esses vetores representam estados quânticos de dois níveis em que
P(|0⟩ , |ψ⟩) = |⟨0|ψ⟩|2 = |a0|2 e P(|1⟩ , |ψ⟩) = |⟨1|ψ⟩|2 = |a1|2. Isso representa uma justifi-
cativa para a condição de normalização, uma vez que a soma das probabilidades descritas
deve ser igual a 1. A vantagem de apresentar uma primeira definição de q-bits de uma
maneira mais abstrata, apenas como objetos matemáticos, é de poder construir uma teoria
que não depende de um sistema físico em específico.

A notação de vetor de estado, embora satisfatória, só permite descrever os chamados
estados puros; para uma descrição mais geral, que pode ser usada tanto para estados
puros quanto para estados mistos – sistemas físicos no qual há uma mistura estatística de
estados quânticos, também chamada de ensemble de estados puros –, utiliza-se o operador
densidade ρ, com o termo “operador” estando associado ao fato de que ρ é um elemento do
espaço de operadores lineares. Uma relação direta entre ambas as representações é dada
por ρ = |ψ⟩ ⟨ψ|, para estados puros, e ρ = ∑

i pi |ψi⟩ ⟨ψi|, com pi sendo a probabilidade
de ocorrência de um dado estado |ψi⟩, para estados mistos. Esses operadores, que são
hermitianos, positivos semi-definidos e tem Tr(ρ) = 1, donde Tr denota o traço de uma
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matriz, podem ser representados por matrizes complexas 2 × 2 para o caso de um único
q-bit. Além disso, para o conjunto de operadores densidade representando estados mistos,
tem-se a condição adicional de que Tr(ρ2) < 1 – o valor mínimo é Tr(ρ2) = 1

2, que

correponde ao estado de máxima mistura estatística tal que ρ = I
2 –, enquanto para os

puros essa condição é dada por Tr(ρ2) = 1.

A descrição de estados quânticos por meio do operador densidade tem uma impor-
tante interpretação geométrica, que pode ser melhor visualizada com a definição da esfera
de Bloch.

Além disso, operadores lineares também podem ser utilizados para representar
processos físicos sobre um sistema quântico. Entretanto, essa definição ainda é muito
geral para os propósitos desse trabalho; destaca-se que, para sistemas físicos fechados,
isto é, o sistema em que conhecemos todos os graus de liberdade, temos que o estado
|ψ′⟩ = a′

0 |0⟩ + a′
1 |1⟩ resultante da operação |ψ′⟩ = U |ψ⟩, em que U é um operador

linear que atua em um espaço de dimensão finita, logo tem uma representação matricial,
obedece a condição de normalização. Com isso, assegura-se que U é um operador unitário
UU † = U †U = I. Dessa definição, destaca-se ainda uma importante característica de
processos físicos descritos por operadores unitários: a reversibilidade. Como U é inversível,
o processo inverso pode sempre ser descrito pelo operador U−1 = U †. Logo, nesse trabalho,
operações sobre um único q-bit sempre serão representadas por operadores unitários.

Ainda na analogia com a computação clássica, da mesma forma que o processamento
de bits pode ser representado a partir de um modelo de circuitos lógicos, no qual cada
fio representa um bit e cada porta lógica é representada de acordo com uma simbologia
adequada, o processamento de q-bits pode ser representado por meio de um modelo
semelhante, no qual as portas lógicas passam a ser chamadas de portas quânticas.

Alguns exemplos de portas que agem em apenas um q-bit são as representadas pelas

matrizes de Pauli σx =
0 1

1 0

, σy =
0 −i
i 0

 e σz =
1 0

0 −1

. Nota-se que elas não

são apenas unitárias (σiσ†
i = I), como também são hermitianas (σi = σ†

i ). Essas matrizes
tem grande importância sob um ponto de vista teórico em geral: da Álgebra Linear temos
que todo operador hermitiano que atua num espaço de dimensão 2 possui 4 parâmetros
reais e pode ser expandido na base {I, σx, σy, σz} de matrizes de Pauli. Há ainda outras
portas relevantes, como a Hadamard H = 1√

2
(|0⟩ ⟨0| + |0⟩ ⟨1| + |1⟩ ⟨0| − |1⟩ ⟨1|), a porta

S = (|0⟩ ⟨0| + i |1⟩ ⟨1|) e a porta T = (|0⟩ ⟨0| + eiπ/4 |1⟩ ⟨1|), que são de fundamental
importância na definição de um conjunto universal de portas, o que será feito mais adiante.
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2 ASPECTOS GEOMÉTRICOS DO Q-BIT

De início, resgata-se a associação entre o espaço de Hilbert H definido anteriormente
e o espaço C2. Da Eq. (1.1), como a0, a1 ∈ C, é natural pensar que cada estado corresponde
univocamente a um ponto de C2. Entretanto há uma consideração física importante que
impede isso: Dois estados quânticos que diferem apenas de uma fase global, como |ψ⟩ e
eiθ |ψ⟩, θ ∈ R, representam o mesmo sistema físico (1). Isso motiva a definição de uma
classe de equivalência, desconsiderando, por ora, a condição de normalização

|ψ⟩ ∼ |ψ′⟩ ⇐⇒ |ψ′⟩ = c |ψ⟩ , (2.1)

com c ∈ C\{0}. Dessa forma, são as retas que passam pela origem em C2 que estão
associadas aos estados quânticos de maneira tal que o conjunto dessas retas definidas na
Eq. (2.1) formam o espaço projetivo complexo CP1 (3). Por outro lado, esse espaço é
isomorfo à chamada esfera de Riemann (4), que por sua vez está relacionada com a esfera
de raio unitário S2. Assim, deduz-se que todos os estados puros de um único q-bit podem
ser representados como pontos da superfície de uma esfera de raio 1 em R3.

Isso pode ser melhor visualizado a partir de uma parametrização conveniente, tendo
em vista a condição de normalização

|ψ⟩ = cos
(
θ

2

)
|0⟩ + eiϕ sin

(
θ

2

)
|1⟩ , (2.2)

em que θ ∈ [0, π] e ϕ ∈ [0, 2π). A associação com o sistema de coordenadas esféricas é
imediata: Cada estado |ψ⟩ representado pela Eq. (2.2) corresponde a apenas um único par
(θ, ϕ), com exceção dos estados |0⟩, que se encontra no pólo norte, e |1⟩, que se encontra
no pólo sul. Ambos tem valor de θ bem definido – 0 e π, respectivamente –, mas não um
de ϕ. A essa esfera dá-se o nome de esfera de Bloch.

Por outro lado, com o formalismo de operador densidade, deixa ainda mais claro
o caráter geométrico intrínseco à definição de um q-bit. Nesse sentido, para um estado
puro parametrizado, a relação entre o operador densidade ρ que descreve esse sistema e o
respectivo vetor de estado |ψ⟩ é

ρ = |ψ⟩ ⟨ψ| =


cos2

(
θ

2

)
e−iϕ sin

(
θ

2

)
cos

(
θ

2

)

eiϕ sin
(
θ

2

)
cos

(
θ

2

)
sin2

(
θ

2

)


= 1
2

1 + cos (θ) e−iϕ sin (θ)
eiϕ sin (θ) 1 − cos (θ)

 .
(2.3)
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Figura 1 – Representação gráfica de uma esfera de Bloch.
Fonte: NIELSEN; CHUANG. (1)

Além disso, a relação entre as coordenadas cartesianas (x, y, z) e as coordenadas
esféricas (θ, ϕ) de um ponto na superfície da esfera de Bloch é


x = sin (θ) cos (ϕ)

y = sin (θ) sin (ϕ)

z = cos (θ)

(2.4)

assim, a Eq. (2.3) pode ser reescrita como

ρ = 1
2

 1 + z x− iy

x+ iy 1 − z

 = 1
2(I + xσx + yσy + zσz), (2.5)

ou de maneira mais compacta,
ρ = I + r⃗ · σ⃗

2 , (2.6)

em que r⃗ = xî+ yĵ + zk̂ e σ⃗ = σxî+ σy ĵ + σzk̂ sendo um vetor formado pelas matrizes de
Pauli (2). É interessante destacar ainda um critério de identificação da natureza do estado
dado o seu operador densidade. Dada a Eq. (2.5), tem-se

Tr(ρ2) = (1 + z)2 + (x− iy)(x+ iy) + (1 − z)2 + (x+ iy)(x− iy)
4

= 1 + |r⃗|2

2 .

(2.7)

Nessa representação, fica clara a correspondência um para um existente entre
operadores densidade (estados quânticos) e vetores r⃗ que ligam do centro da esfera a um
ponto da sua superfície, uma vez que Tr(ρ2) = 1 =⇒ |r⃗| = 1. Analogamente, os pontos
internos à esfera de Bloch, ou seja, |r⃗| < 1, também tem significado físico, uma vez que
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eles representam estados mistos, sendo o centro a representação do estado de máxima
mistura estatística. Além disso, pontua-se que transformações unitárias não podem alterar
a pureza – o valor de |r⃗| – de um estado.

Com efeito, é válido mostrar como as transformações unitárias representam rotações
na esfera de Bloch. Nesse sentido, o operador de rotação pode ser definido como

Rn̂(θ) = e−iθ(n̂·σ⃗)/2, (2.8)

de forma que n̂ = (nx, ny, nz) é um vetor unitário em relação ao qual a rotação é tomada
e θ é o ângulo rotacionado (5). Assim, tem-se (n̂ · σ⃗)2 = I, o que permite reescrever a Eq.
(2.8) de uma maneira mais interessante sob o ponto de vista operacional

Rn̂(θ) = cos
(
θ

2

)
I − i sin

(
θ

2

)
(n̂ · σ⃗). (2.9)

Um exemplo em que é direta a interpretação do operador de rotações agindo sobre um
q-bit é quando toma-se n̂ = k̂ = (0, 0, 1), de maneira que

Rk̂(α) = cos
(
α

2

)
I − i sin

(
α

2

)
σz =

e−iα/2 0
0 eiα/2

 .
Dessa forma

|ψ′⟩ = Rk̂(α) |ψ⟩ =
e−iα/2 0

0 eiα/2




cos
(
θ

2

)

eiϕ sin
(
θ

2

)
 = e−iα/2


cos

(
θ

2

)

ei(ϕ+α) sin
(
θ

2

)
 , (2.10)

e como fases globais não tem significado físico, nota-se que, de fato, o vetor |ψ′⟩ é igual ao
vetor |ψ⟩ rotacionado de um ângulo α em torno do eixo z. Por fim, veja que toda matriz
2 × 2 unitária U pode ser escrita na forma

U =
ei(α−β/2−δ/2) cos

(
γ
2

)
−ei(α−β/2+δ/2) sin

(
γ
2

)
ei(α+β/2−δ/2) sin

(
γ
2

)
ei(α+β/2+δ/2) cos

(
γ
2

)  ,
em que α, β, γ, δ ∈ R. Essa relação pode ser reescrita em termos dos operadores de rotação:
U = eiαRk̂(β)Rĵ(γ)Rk̂(δ), sendo essa representação conhecida por, a menos de uma fase
global, como parametrização em termos dos ângulos de Euler. Fisicamente, entretanto,
não há nenhuma justificativa para se privilegiar os eixos y e z, de forma que é possível
escrever esse resultado de uma maneira mais geral

U = eiαRm̂(β)Rl̂(γ)Rm̂(δ), (2.11)

em que l̂ e m̂ são vetores unitários não paralelos. Isso evidencia como as transformações
unitárias, que representam portas quânticas de um q-bit, estão diretamente relacionadas a
rotações.
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3 GEOMETRIA E COMPLEXIDADE

3.1 Conjunto universal de portas e o problema da complexidade

Agora, o interesse é voltado para estudar a dificuldade de implementação de
diferentes transformações unitárias utilizando ferramentas oriundas da geometria diferencial.
Primeiramente, é necessário apresentar o modelo mais conhecido para quantificar essa
dificuldade e, para isso, introduz-se a noção de conjunto universal de portas. É demonstrável
(1) que todas as portas de um q-bit e a porta CNOT – operação unitária CNOT =
(|0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ σx) – constituem um conjunto universal, no sentido de que todas
as unitárias U que atuam em n q-bits podem ser implementadas a partir de portas desse
conjunto. Entretanto, esse resultado não representa um ganho prático, uma vez que boa
parte desse conjunto não pode ser realizado de uma maneira resistente a erros (1).

A solução é encontrar um subconjunto discreto em que isso possa ser superado,
mesmo que, em contrapartida, não seja mais possível reproduzir qualquer transformação
U com exatidão, já que elas fazem parte de um conjunto contínuo. Com efeito, o melhor
que se pode fazer agora é aproximar U com o operador V , e assim introduz-se a definição
do erro E(U, V ) entre esses dois operadores como

E(U, V ) = max|ψ⟩∥(U − V ) |ψ⟩∥, (3.1)

de forma que ∥|ϕ⟩∥ =
√

⟨ϕ|ϕ⟩ denota a norma de |ϕ⟩ e |ψ⟩ ∈ H. De forma geral, quando é
dito que um circuito quântico realiza uma operação V que aproxima U com tolerância
ϵ > 0, significa que E(U, V ) < ϵ (2).

Com isso, apresenta-se o mais conhecido conjunto universal de portas, composto
por {CNOT, H, T , S}. É comum na literatura desconsiderar a porta S, uma vez que
ela pode ser construída a partir da porta T usando que S = T 2 – a definição dessas
últimas três portas foi dada no final do Capítulo 1. Esse conjunto de forma alguma é único,
mas acaba sendo de grande interesse pela demonstração da sua universalidade. No caso
de interesse desse trabalho, isto é, de sistemas compostos apenas por um único q-bit, o
conjunto universal se resume à {H, T}, assim a universalidade desse conjunto segue do
fato de que a porta T representa uma rotação de π4 na esfera de Bloch em torno do eixo z,

a menos de uma fase global, enquanto HTH representa uma rotação de π

4 em torno do
eixo x. Dessa forma, a composição dessas duas transformações

THTH = cos2
(
π

8

)
I − i

[
cos

(
π

8

)
(σx + σz) + sin

(
π

8

)
σy

]
sin

(
π

8

)

resulta em uma rotação de θ, tal que cos
(
θ

2

)
= cos2

(
π

8

)
, em torno de um eixo m⃗ =(

cos
(
π

8

)
, sin

(
π

8

)
, cos

(
π

8

))
.
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O fato de que θ

π
é um número irracional garante que existe k ∈ Z tal que

Rk
m̂(θ) aproxima Rm̂(α), α ∈ [0, 2π), com uma tolerância arbitrariamente pequena, isto é,

E(Rm̂(α), Rk
m̂(θ)) < δ, sendo δ > 0 (1). Para demonstrar isso, sejam N um inteiro maior

que 2π/δ e θr ∈ [0, 2π) | θr = (rθ) mod 2π, r ∈ Z, então, pelo princípio das casas de
pombos, existem r e s inteiros no intervalo [1, N ] tal que |θr − θs| ≤ 2π/N < δ. Assumindo,
sem perca de generalidade, que r > s e como θ

π
é irracional, tem-se |θr−s| < δ, com θr−s ̸= 0.

Assim, é garantido que θq(r−s) cobre todo o intervalo [0, 2π) conforme q varia, q ∈ Z, com
a máxima distância entre dois termos sucessivos dessa sequência sendo δ. Por fim, como
HRm̂(θ)H = Rl̂(θ), com l̂ e m̂ não paralelos, e a relação dada na Eq. (2.11) assegura que,
a menos de uma fase global, qualquer transformação U pode ser escrita como produto de
rotações em relação a eixos não paralelos, segue de E(Un...U1, Vn...V1) ≤ ∑n

i=1 E(Ui, Vi)
que

E(U,Rk1
m̂ (θ)HRk2

m̂ (θ)HRk3
m̂ (θ)) < ϵ, (3.2)

com k1, k2, k3 ∈ Z e fazendo ϵ = δ1 + δ2 + δ3. Assim, a Eq. (3.2) demonstra a universalidade
do conjunto {H, T}, uma vez que, por construção, os operadores Rm̂(θ) só dependem de
seus elementos (1).

Nesse formalismo, a ideia de complexidade está intimamente relacionada com a
menor quantidade de portas do conjunto universal necessária para aproximar uma dada
transformação U com tolerância ϵ. No entanto, essa definição carrega consigo alguns
problemas (6):

• A escolha do conjunto universal de portas é arbitrária e diferentes conjuntos podem
resultar em complexidades distintas para uma mesma transformação.

• A escolha de um determinado valor para a tolerância ϵ também é arbitrária e a
complexidade resultante é extremamente sensível ao valor de ϵ.

• A definição apresentada de complexidade é descontínua no sentido de que dois estados
podem estar arbitrariamente próximos na noção de distância induzida pelo produto
interno mas serem exponencialmente distantes em complexidade.

Deixando um pouco mais clara a noção de distância induzida pelo produto interno:
No espaço de Hilbert, é assumido que dois estados se aproximam conforme o produto
interno entre eles cresce. Nesse sentido, dois estados ortogonais estão o mais distante
possível um do outro nesse espaço. É no espírito desses três pontos em que se constrói uma
abordagem alternativa para o cálculo de complexidade computacional, sendo a proposta
uma tentativa de explicitar matematicamente o fato de que algumas transformações são
de fácil execução mesmo que os estados que ela relaciona estejam maximamente separados,
além de introduzir uma forma contínua de se contabilizar complexidade (6).
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Há duas maneiras de se fazer isso e também há uma forma de relacioná-las; a
primeira maneira, introduzida na Ref. (7), denominada de complexidade unitária, diz
respeito a calcular o comprimento de geodésicas – curvas que minimizam localmente a
distância entre dois pontos segundo a métrica do espaço – entre I e a unitária U que se
deseja implementar na variedade diferenciável associada ao SU(2). Destaca-se que o grupo
SU(2) é composto pelas matrizes unitárias 2 × 2 que possuem det U = 1, assim todo o
tratamento dado a transformações unitárias ao longo desse trabalho continua válido para
os elementos desse grupo. Além disso, como o SU(2) é um exemplo de grupo de Lie, é
possível associar uma variedade diferenciável a ele e assim os elementos do grupo passam
a ser vistos como pontos dessa variedade, de forma que é possível construir a noção de
espaço tangente localmente euclidiano (8), fundamental para a nova definição de distância
de complexidade. Essa nova definição se baseia na métrica associada ao produto interno
natural desse espaço ⟨A,B⟩ = Tr(A†B), A,B ∈ SU(2), inserindo um fator de penalidade
que representa o fato de que nem todas as direções do espaço tangente tem o mesmo grau
de dificuldade de serem percorridas.

Já a segunda maneira, denominada complexidade de estado, está associada à
situação em que, dado dois estados, o quão difícil é obter um deles partindo do outro (6).
Analogamente, isso pode ser feito introduzindo uma métrica alternativa àquela relacionada
ao produto interno no espaço de Hilbert, o que permite calcular a distância de complexidade
de estado. A relação entre essas duas formas de quantificar complexidade segue do fato
de que a conexão entre dois estados |ψ⟩ , |ϕ⟩ ∈ H se dá pela ação de um elemento do
subconjunto de SU(2) de todos os operadores U que satisfazem |ψ⟩ = U |ϕ⟩, logo define-se
que a complexidade de estado é igual a menor complexidade unitária de um elemento
desse subconjunto.

3.2 Complexidade unitária

Para iniciar a discussão sobre complexidade unitária, é necessário conhecer um
pouco mais sobre a estrutura do grupo SU(2) e a sua respectiva variedade; primeiro,
nota-se que, da definição, temos

SU(2) =

 a1 + ia2 b1 + ib2

−b1 + ib2 a1 − ia2

 , (a1, a2, b1, b2) ∈ R4 e a2
1 + a2

2 + b2
1 + b2

2 = 1
 , (3.3)

ou seja, esse grupo é homeomorfo a S3, a esfera de raio 1 no espaço R4 (9). Além disso, a sua
álgebra de Lie su(2) é formada pelas matrizes de Pauli e, por consequência, elas também
formam a base do espaço tangente no ponto da variedade correspondente à identidade. De
maneira mais geral, é possível dizer que o espaço tangente a qualquer ponto da variedade é
gerado por matrizes hermitianas de traço nulo, tal que as matrizes σi (i = x, y, z) também
formam uma base desse espaço vetorial sobre o corpo dos reais (10). Assim, a distância ds
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induzida pelo produto interno entre duas unitárias U e U + dU é dada por

ds2 = Tr(dU †dU) =
∑
j,k

Tr(idUU †σj)δjkTr(idUU †σk). (3.4)

Como já foi antecipado, para definir matematicamente a distância de complexidade unitária,
ao invés da delta de Kronecker δjk, introduz-se o fator de penalidade I tal que Ijk são
as componentes de um tensor simétrico, uma vez que ir de um ponto A até B deve ter
o mesmo custo de ir de B até A, e positivo-definido, já que a noção de distância está
associada a valores não negativos (6). Dessa forma, a distância de complexidade dsU entre
as duas unitárias consideradas anteriormente aparece como

ds2
U =

∑
j,k

Tr(idUU †σj)IjkTr(idUU †σk), (3.5)

por outro lado, é possível adicionar a hipótese de que, no caso de estudo desse trabalho,
Ijk está escrito numa base tal que sua representação é diagonal. Assim, a Eq. (3.5) assume
a forma

ds2
U = IxxTr(idUU †σx)2 + IyyTr(idUU †σy)2 + IzzTr(idUU †σz)2. (3.6)

À esta altura, torna-se interessante destacar uma intuição física para os fatores de pena-
lidade: mostrou-se, no Capítulo 2, como as matrizes de Pauli estão diretamente ligadas
a rotações em relação aos três eixos cartesianos na esfera de Bloch. De fato, os valores
atribuídos a Ixx, Iyy e Izz representam matematicamente o quão difícil é implementar
uma unitária que atua como um rotação em torno dos eixos x, y e z, respectivamente.

Agora, inicia-se uma análise mais detalhada para o caso dos tensores Iij = δij

e Ixx = Iyy = 1, com Izz arbitrário. Para isso, introduz-se um sistema de coordenadas
utilizando a parametrização em termos dos ângulos de Tait-Bryan para os elementos de
SU(2), de forma que U é escrito como

U = eiθzσzeiθyσyeiθxσx . (3.7)

Além disso, para evitar carregar fatores numéricos extra, considera-se uma normalização
para o traço tal que Tr(I) = 1 e, por consequência, Tr(σiσj) = δij.

1◦) Iij = δij:

Substituindo esses fatores e a Eq. (3.7) na Eq. (3.6), chega-se em

ds2
U = dθ2

x + dθ2
y + dθ2

z + 2 sin(2θy)dθxdθz, (3.8)

que é justamente a distância entre pontos arbitrariamente próximos em uma esfera
S3 em coordenadas não convencionais. O resultado de forma alguma é uma surpresa:
a métrica aplica a mesma penalidade em todas as direções, ou seja, ela recupera o
caso da distância induzida pelo produto interno. Destaca-se ainda que, conforme
esperado, a métrica exprime o caráter homogêneo e isotrópico do espaço S3.
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2◦) Ixx = Iyy = 1:

Substituindo esses novos fatores na Eq. (3.6), obtém-se

ds2
U = cos2(2θy)dθ2

x + dθ2
y + Izz(dθz + sin(2θy)dθx)2

= (cos2(2θy) + Izz sin2(2θy))dθ2
x + dθ2

y + Izzdθ2
z + 2Izz sin(2θy)dθxdθz.

(3.9)

Assim como no caso anterior, essas não são as coordenadas mais usuais para represen-
tar essa métrica, o que pode dificultar a identificação, entretanto ela está associada a
chamada esfera de Berger – a esfera de Berger é um espaço riemanniano homogêneo
difeomorfo a S3, de tal maneira que sua métrica pode ser obtida deformando a
métrica usual de S3 (11). Por consequência, a métrica que aparece na Eq. (3.9)
continua sendo homogênea, mas não é mais isotrópica.

É interessante pontuar que é possível encontrar uma expressão analítica para a
métrica de complexidade gij tal que ds2

U = gijdθ
idθj, utilizando a convenção de Einstein,

no caso geral em que todos os fatores de penalidade assumem valores arbitrários (6).
Essa métrica é homogênea e completamente anisotrópica. Para investigar mais a fundo
a geometria dos dois casos estudados, é necessário introduzir um parâmetro geométrico
importante: o chamado escalar de Ricci R, que atribui um valor real para cada ponto do
espaço associado com a curvatura nele, com esse valor dependendo apenas da métrica e de
suas derivadas na vizinhança desse ponto.

Para a 1◦ situação, segue da definição que R = 6 em todos os pontos do espaço, o
que era esperado, uma vez que n-esferas tem curvatura uniforme e positiva. Isso garante
também que uma dada família de geodésicas em S3 tende a convergir. Por outro lado, para
a 2◦ situação, o escalar de Ricci se torna uma função de Izz tal que R = 8 − 2Izz, ou seja,
a curvatura desse espaço continua sendo uniforme, mas para valores de Izz > 4 ela não é
mais positiva. Nesse caso, uma família de geodésicas tende a divergir (12).

3.3 Complexidade de estado

Agora a discussão será centrada no conceito de complexidade de estado. Foi
mostrado, no Capítulo 2, que os estados puros de um único q-bit são topologicamente uma
S2 e a essa 2-esfera dá-se o nome de esfera de Bloch, de forma que há uma relação unívoca
entre um estado |ψ⟩ ∈ H e um vetor unitário ψ⃗ ∈ R3. Essa relação pode ser descrita pelo
mapa

ψ⃗ = ⟨ψ| σ⃗ |ψ⟩ , (3.10)

lembrando que σ⃗ = σxî + σy ĵ + σzk̂. Dessa maneira, é possível definir a relação entre o
produto interno nesses dois espaços como sendo

|⟨ψ2|ψ1⟩|2 = 1 + ψ⃗1 · ψ⃗2

2 = cos2
(
α

2

)
, (3.11)
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em que α é o ângulo entre os vetores ψ⃗1 e ψ⃗2. Essa convenção é utilizada para que estados
ortogonais, ⟨ψ2|ψ1⟩ = 0, estejam associados aos pontos antipodais da esfera de Bloch,
α = π.

Com efeito, para encontrar a métrica associada a complexidade de estado, é
necessário encontrar a distância ds entre dois estados |ψ⟩ e |ψ + dψ⟩ arbitrariamente
próximos e inserir os fatores de penalidade correspondentes. Seja ψ⃗ + dψ⃗ o vetor associado
a |ψ + dψ⟩, nota-se que a condição dada na Eq. (3.11) atribui uma relação entre ψ⃗ e dψ⃗
para que o estado considerado seja normalizado. Tomando a aproximação em primeira
ordem de dψ⃗

|⟨ψ + dψ|ψ + dψ⟩|2 = 1 + ψ⃗ · dψ⃗ =⇒ ψ⃗ · dψ⃗ = 0. (3.12)

Por conseguinte, assume-se que o estado |ψ + dψ⟩ pode ser obtido de |ψ⟩ a partir de uma
rotação infinitesimal em torno de um eixo r⃗. No entanto, pela definição de rotações, é
necessário ter r⃗ · dψ⃗ = 0, que é satisfeita por uma família de vetores unitários r⃗ que estão
contidos no plano perpendicular a dψ⃗. Logo

r⃗ = dψ⃗ × ψ⃗ + βψ⃗∣∣∣dψ⃗ × ψ⃗ + βψ⃗
∣∣∣ , (3.13)

em que β ∈ R é um parâmetro cuja determinação está relacionado com a escolha do
eixo de rotação que minimiza o ângulo percorrido para ir de ψ⃗ a ψ⃗ + dψ⃗. Pontua-se a
associação direta entre essa descrição e a de escolher o elemento U , do subconjunto de
todas as transformações unitárias que satisfazem |ψ + dψ⟩ = U |ψ⟩, que possui a menor
complexidade unitária, feita anteriormente. Por outro lado, adaptando a Eq. (2.8), é

Figura 2 – Exemplos de vetores unitários que satisfazem a Eq. (3.13).
Fonte: BROWN; SUSSKIND. (6)

possível descrever essa rotação em termos de uma série de Taylor que, diferenciando e
tomando apenas a primeira ordem em dψ⃗, é escrita como dU = 1

2i(dψ⃗ × ψ⃗ + βψ⃗) · σ⃗.
Desconsiderando, em primeira análise, os fatores de penalidade, a Eq. (3.4) dá que

ds2 = (dψ⃗ × ψ⃗ + βψ⃗) · (dψ⃗ × ψ⃗ + βψ⃗)
4 = dψ⃗ · dψ⃗ + β2

4 , (3.14)

de forma que é direta a conclusão de que β = 0 minimiza a Eq. (3.14), resultando na
métrica usual em S2 com um fator 4 adicional: 4ds2 = dθ2 + sin2 (θ)dϕ2. Isso implica no
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fato de que, nesse caso, o vetor r⃗ o qual está associado ao menor ângulo de rotação possível
é aquele que é perpendicular tanto a dψ⃗ quanto a ψ⃗, ou seja

dα2 = dψ⃗ · dψ⃗∣∣∣ψ⃗ × r⃗
∣∣∣2 =⇒ dα2

min = dψ⃗ · dψ⃗. (3.15)

Agora, considera-se um fator de penalidade representado pelo tensor Iij = δij +
(Izz−1)pipj . Fisicamente esse fator penaliza apenas rotações em relação a um eixo arbitrário
p⃗ unitário. Nesse sentido, define-se um produto interno a⃗∗ b⃗ = a⃗ · b⃗+(Izz −1)(⃗a · p⃗)(⃗b · p⃗) em
R3 e que leva em consideração a penalização. Tomando por base a Eq. (3.14), a distância
de complexidade de estado dsE é escrita como

4ds2
E = (dψ⃗ × ψ⃗ + βψ⃗) ∗ (dψ⃗ × ψ⃗ + βψ⃗)

= (dψ⃗ × ψ⃗) ∗ (dψ⃗ × ψ⃗) − [ψ⃗ ∗ (dψ⃗ × ψ⃗)]2

ψ⃗ ∗ ψ⃗
+ (ψ⃗ ∗ ψ⃗)

[
β + ψ⃗ ∗ (dψ⃗ × ψ⃗)

ψ⃗ ∗ ψ⃗

]2

.
(3.16)

Note que, escolhendo o valor de β que minimiza a equação acima, o último termo dessa
expressão vai a zero. Usando um sistema de coordenadas polares {θ, ϕ} tal que p⃗ está
alinhado com o pólo norte de S2 e, consequentemente, Ixx = Iyy = 1, a Eq. (3.16) é
reescrita como

4ds2
E = dψ⃗ · dψ⃗ + (Izz − 1)[dψ⃗ · (ψ⃗ × p⃗)]2

(Izz − 1)(ψ⃗ · p⃗)2 + 1

= dθ2 + Izz sin2 (θ)
Izz cos2 (θ) + sin2 (θ)dϕ

2,

(3.17)

e é direta a verificação de que Izz = 1 faz que dsE = ds. Analogamente ao que foi exposto no
caso da complexidade unitária, é possível encontrar uma expressão analítica para a métrica
de complexidade de estado no caso geral em que fatores de penalidade assumem valores
arbitrários (6). Como métricas também podem ser escritas na representação matricial,
pontua-se que, no primeiro caso, ela é representada por uma matriz 3 × 3, enquanto no
segundo ela é representada por uma 2 × 2.

Ademais, a relação entre a distância de complexidade dsE e o ângulo de rotação
dα correspondente pode ser obtida utilizando a noção de produto interno penalizado e se
apresenta como

4ds2
E = (1 + (Izz − 1)(p⃗ · r⃗)2)dα2. (3.18)

Observa-se que a distância de complexidade passa a ser uma função tanto do fator Izz
quanto do ângulo entre p⃗ e r⃗. Substituindo a Eq. (3.15) nessa expressão, tem-se

4ds2
E = 1 + (Izz − 1)(p⃗ · r⃗)2∣∣∣ψ⃗ × r⃗

∣∣∣2 dψ⃗ · dψ⃗. (3.19)

A Eq. (3.19) torna clara a interpretação do eixo r⃗ que minimiza a distância de complexidade
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Figura 3 – Exemplo de r⃗ ideal para os vetores p⃗ e ψ⃗ mostrados.
Fonte: BROWN; SUSSKIND. (6)

de estado para o caso de estudo: É necessário que a escolha reduza tanto o ângulo de
rotação dα, isso é feito fazendo o produto escalar (ψ⃗ · r⃗) ser o mais próximo possível de 0,
quanto a penalização na direção do eixo de rotação adotado, isso é feito fazendo o produto
escalar (p⃗ · r⃗) ser o mais próximo possível de 0. Note que já era possível obter o vetor

r⃗ ideal desde a Eq. (3.16), que acaba resultando em β = −(Izz − 1)[p⃗ · (dψ⃗ × ψ⃗)](p⃗ · ψ⃗)
1 + (Izz − 1)(p⃗ · ψ⃗)2

,

porém o tratamento posterior é fundamental para compreender o significado geométrico
desse resultado.

É interessante observar como o vetor ideal r⃗ se comporta conforme varia-se o valor
do fator de penalização Izz. No caso em que Izz = 1, recupera-se o caso sem penalização e
tem-se ψ⃗ · r⃗ = 0, enquanto no caso em que Izz → ∞, a Eq. (3.19) mostra que é necessário
ter p⃗ · r⃗ = 0. Para valores intermediários de Izz, espera-se que r⃗ esteja contido na região
entre os dois planos exibidos na Fig. 3.

Por fim, calcula-se o escalar de Ricci para a métrica descrita na Eq. (3.17)

R = 8Izz[1 − 2(Izz − 1) cos2 (θ)]
(Izz cos2 (θ) + sin2 (θ))2 . (3.20)

Para Izz <
3
2, a curvatura é positiva em todo o espaço de Hilbert considerado. Mais do

que isso, é possível analisar o efeito da penalização sob a ótica de deformação da esfera de
Bloch, no sentido de que, para Izz < 1, ela se torna prolata, enquanto para 1 < Izz <

3
2

ela se torna oblata. Já para Izz >
3
2, a curvatura passa a ser negativa nos pólos, cai até

um valor mínimo e depois volta a crescer nas proximidades do equador, chegando a um
valor máximo de R = 8Izz em θ = π

2 . Topologicamente, H passa a ser visto como dois
discos negativamente curvados, o que dificulta a representação gráfica em R3, conectados
por uma região de curvatura positiva no centro.

Analisando ainda o caso em que Izz → ∞, conclui-se que, da Eq. (3.20), R =
− 16

cos2 (θ) , exceto para regiões próximas de θ = π

2 , onde R colapsa na função delta positiva.

É interessante pontuar também que, embora haja muitas semelhanças no comportamento
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Figura 4 – R(θ) para os esferoides prolato, oblato e a região com curvatura negativa.
Fonte: Elaborada pelo autor.

das complexidades tanto unitária quanto de estado, no caso da métrica na Eq. (3.9), a
curvatura correspondente é uniforme e diverge em todo espaço no limite em que Izz → ∞,
enquanto na métrica exibida na Eq. (3.16) a curvatura deixa de ser constante e diverge
apenas na região equatorial nesse mesmo limite.

3.4 Sistemas de múltiplos q-bits

É possível generalizar boa parte das ideias expostas nas seções anteriores, sobretudo
as que são relacionadas à geometria de complexidade unitária, para sistemas compostos por
N > 1 q-bits. Nesse sentido, a variedade diferenciável considerada passa a ser a associada
ao SU(2N), de forma que uma base completa para seu espaço tangente é dada pelas
4N − 1 matrizes de Pauli generalizadas, tal como σJ = σ1,x ⊗ I2 ⊗ ... ⊗ σN,z, onde cada
termo desse produto tensorial é dado por uma matriz de Pauli σi (i = x, y, z) ou pela
identidade I, excluindo-se o elemento I1 ⊗ I2 ⊗ ...⊗ IN . Por conseguinte, as relações (3.4)
e (3.5) permanecem válidas, desde que sejam feitas as substituições σi → σI e Iij → IIJ .
Destaca-se que o fator de penalidade IIJ continua representando matematicamente o
quão difícil é seguir por uma dada direção no espaço tangente, mas agora direções difíceis
passam a estar associadas a elementos da base σI que tocam muitos q-bits, ou seja, quanto
mais termos de um q-bit diferentes da identidade σI possuir, maior será o valor de III .

Em geral, o caso de N q-bits é melhor abordado como um problema de controle
geométrico, como é feito nas Refs. (7) e (10), em que a tarefa de encontrar o menor
caminho entre I e uma unitária de interesse U , segundo uma métrica de complexidade
definida a partir de um tensor IIJ , é análoga a de encontrar uma hamiltoniana H(t), que
pode ser expandida em termos das matrizes de Pauli generalizadas, dependente do tempo,
que gera U em um determinado tempo T segundo a equação de Schrödinger

dU

dt
= −iH(t)U(t), U(0) = I, U(T ) = U, (3.21)

fazendo ℏ = 1 e tal que H(t) minimiza o funcional custo total d([U ]) =
∫ T

0 dtF [H(t)] dada
uma função custo F [H]. Note que, nessa abordagem, a função custo define a geometria no
espaço SU(2N ), e ela pode ser tomada tal que aplica custo 1 nas componentes de H(t) que
são 2-local – uma componente é dita k-local se ela está associada a um elemento de base
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σI no qual há, no máximo, k termos de um q-bit σi no produto tensorial que o compõe –
e aplica um custo p nas demais componentes.

Esse custo p é arbitrário, mas é interessante que ele cresça exponencialmente com
N , uma vez que isso reflete que a complexidade unitária para esses sistemas pode ser
exponencialmente grande. Essa é uma característica exclusiva da geometria de complexidade
de N q-bits (mesmo no regime em que Izz → ∞, a complexidade em sistemas de um único
q-bit permanece limitada) e está relacionada ao fato de que a maior parte das direções do
espaço tangente são fáceis de serem percorridas no caso de um q-bit, mais especificamente
2 de 3 direções, já que Ixx = Iyy = 1, enquanto no caso de múltiplos q-bits há muito
menos direções fáceis do que difíceis.

Por outro lado, sistemas de um q-bit com a métrica associada à esfera de Berger
ainda refletem algumas características da complexidade de N q-bits, como o fato de
que, em ambos os casos, o volume de uma dada região e a distância média entre dois
pontos no espaço de unitárias correspondente crescem conforme os fatores de penalidade
também crescem; no geral, afirma-se que sistemas com um único q-bit são ineficazes para
identificar como certas propriedades escalam com o tamanho do sistema. Para o caso de
múltiplos q-bits, a possibilidade de distinguir grandezas que crescem polinomialmente das
que crescem exponencialmente permite compreender um padrão de complexidade que é
análogo à evolução da entropia de um sistema clássico com 2N graus de liberdade (13).

Por fim, toma-se a seguinte situação: considere o conjunto de todas as unitárias de
SU(2N) com complexidade inferior a um certo valor. Para valores baixos o suficiente, a
topologia desse conjunto é dada por uma esfera deformada, no sentido de que as direções
fáceis são alongadas enquanto as difíceis são encurtadas. Entretanto, conforme o valor
de complexidade máxima que define o conjunto cresce, essa região se torna muito mais
intrincada, com estruturas (4N − 1)-dimensionais similares a ramos se enrolando em torno
principalmente das direções fáceis.
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4 CONCLUSÃO

O objetivo desse trabalho foi apresentar características gerais acerca da geometria
de q-bits, iniciando da definição tradicional desses sistemas quânticos de dois níveis e
chegando até uma proposta alternativa para a análise de complexidade computacional
quântica, algo que é fundamental para o desenvolvimento de novos algoritmos e para
avaliar a eficiência de algoritmos já estabelecidos em diferentes cenários.

Primeiramente, definidas as noções básicas de vetores de estado, operador densidade
e transformações unitárias, mostrou-se como esses conceitos se relacionam sob um ponto
de vista geométrico, chegando à chamada esfera de Bloch. Foi possível visualizar como
pontos da superfície dessa esfera estão univocamente associados a estados puros de único
q-bit e o formalismo de operador densidade permite relacionar também os pontos internos
dessa esfera com os estados mistos. Além disso, pontuou-se como transformações unitárias
podem ser vistas como rotações na esfera de Bloch, construção fundamental no estudo de
complexidade desenvolvido no restante do trabalho.

Assim, introduziu-se esse estudo exibindo o modelo mais conhecido para a análise
de complexidade, utilizando a noção de conjunto universal de portas. Listou-se, então,
alguns problemas intrínsecos a essa definição e, desejando-se encontrar uma proposta
alternativa, é apresentado o modelo de geometria de complexidade. Nele, a contagem
discreta de portas quânticas dá lugar à distância percorrida ao longo de uma geodésica
no espaço SU(2), para o caso de um q-bit. É discutido tanto o conceito de complexidade
unitária quanto o de complexidade de estado, evidenciando uma relação direta entre
eles. Ademais, investigou-se mais a fundo o comportamento da geometria de alguns casos
especiais, como o caso em que Izz ≫ Ixx = Iyy, uma vez que é possível compará-lo com o
comportamento esperado para sistemas de múltiplos q-bits.

Nesse sentido, mostrou-se ainda as principais características da geometria de com-
plexidade de sistemas de N q-bits que a sua análoga para um único q-bit permite observar
e quais ela falha em apresentar, pontuando-se alguns exemplos mais concretos. A geometria
de complexidade, apesar de estar intrinsicamente relacionada à informação quântica, tem
potencial para ser um conceito mais fundamental: Na Ref. (6), os autores citam a aparente
relação entre ela e a conjectura de complexidade holográfica, na correspondência AdS/CFT,
e a possibilidade de utilizar esse conceito no estudo de termodinâmica estatística, impli-
cando que ela pode vim a ser uma proposta de grande interesse para a física teórica como
um todo.
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