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RESUMO

BATISTA, L. B. N. Geometria de um qg-bit. 2023. 25p. Trabalho de conclusao de
curso - Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 2023.

Um g-bit pode ser entendido como um sistema quantico de dois niveis, cuja representacao
tradicional é um vetor de estado no espago de Hilbert, e operacoes reversiveis sobre
g-bits sdo implementadas a partir de transformacgoes unitarias. Neste trabalho, o objetivo
¢é estudar essas operacoes sob um ponto de vista geométrico, aplicando ferramentas
conhecidas da geometria riemanniana para o entendimento de sistemas quanticos. Dada
a representacao na esfera de Bloch, as operagoes unitarias sobre g-bits aparecem agora
como rotagoes que ligam um estado a outro de forma que, com a introduc¢ao de uma
métrica adequada, é possivel estudar um problema fundamental da anélise de complexidade
computacional: a relacdo entre o menor caminho entre dois estados com a dificuldade de
implementar a operagao unitaria associada a essa transformacao. Veremos que a esfera
de Bloch é deformada conforme variamos os parametros da métrica definida, tornando
algumas rotagoes mais favoraveis em detrimento de outras. Por fim, citaremos alguns
pontos nos quais a andalise de sistemas de um tnico g-bit, embora rica e desafiadora, deixa

a desejar quando comparada com a de sistemas de miultiplos g-bits.

Palavras-chave: ¢-bit. Transformacao unitaria. Esfera de Bloch. Rotagoes. Métrica.
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1 INTRODUCAO

Inspirado na Ref. (1), é possivel definir um @-bit como um objeto matematico,
mais especificamente um vetor, que faz parte de um espago vetorial complexo de dimensao
2, o espago de Hilbert H 2D. Como esse espago tem d = dim(#H) = 2, define-se uma
base ortonormal {|0), |1)}, a chamada base computacional — uma referéncia aos bits da

computagao classica: 0 e 1 —, tal que qualquer elemento |¢)) € H pode ser escrito como

[¥) = a0 |0) + ax [1), (1.1)

2 2 o <
com ag, a; € Ce |ag|"+]a1|” = 1, representando a normalizagdo de |i). Outra representacao

bastante comum na literatura para [¢) é a de vetor coluna

[0) = (Zf)

1 0
tal que |0) = (O) ell) = (1) . Esse tipo de representacao é mais 1til para boa parte dos

propoésitos operacionais presentes nesse trabalho, sobretudo no tratamento de rotagoes.

Outra base ortonormal comumente utilizada é a base de Hadamard (2) {|+), |—)}, de
0 1 0)— |1
forma que |+) = |>\—/|—§|> e|—) = |>2|> Essa base recebe esse nome devido as relagoes:

|+) = H|0) e |—) = H|1), donde H ¢ a transformagao implementada pela chamada porta
Hadamard. Mais sobre portas quanticas e as transformacoes realizadas por elas sera visto

na secao seguinte.

Fisicamente, esses vetores representam estados quanticos de dois niveis em que
P(10), [9)) = [{0[)[* = laol” e P(I1),[¥)) = [(1[¢)|” = |as|*. Tsso representa uma justifi-
cativa para a condicao de normalizacao, uma vez que a soma das probabilidades descritas
deve ser igual a 1. A vantagem de apresentar uma primeira definicao de g-bits de uma
maneira mais abstrata, apenas como objetos matematicos, ¢ de poder construir uma teoria

que nao depende de um sistema fisico em especifico.

A notacao de vetor de estado, embora satisfatoria, s6 permite descrever os chamados
estados puros; para uma descricao mais geral, que pode ser usada tanto para estados
puros quanto para estados mistos — sistemas fisicos no qual ha uma mistura estatistica de
estados quanticos, também chamada de ensemble de estados puros —, utiliza-se o operador
densidade p, com o termo “operador” estando associado ao fato de que p é um elemento do
espaco de operadores lineares. Uma relagao direta entre ambas as representagoes é dada
por p = |¢) (¢, para estados puros, e p = >, p; [1;) (¥4], com p; sendo a probabilidade
de ocorréncia de um dado estado [1);), para estados mistos. Esses operadores, que sao

hermitianos, positivos semi-definidos e tem Tr(p) = 1, donde Tr denota o trago de uma



matriz, podem ser representados por matrizes complexas 2 x 2 para o caso de um unico
g-bit. Além disso, para o conjunto de operadores densidade representando estados mistos,

tem-se a condigao adicional de que Tr(p?) < 1 — o valor minimo é Tr(p?) = 5 que

correponde ao estado de maxima mistura estatistica tal que p = 37 enquanto para os

puros essa condigdao é dada por Tr(p?) = 1.

A descrigao de estados quanticos por meio do operador densidade tem uma impor-

tante interpretacao geométrica, que pode ser melhor visualizada com a definicao da esfera

de Bloch.

Além disso, operadores lineares também podem ser utilizados para representar
processos fisicos sobre um sistema quéntico. Entretanto, essa definicao ainda é muito
geral para os propositos desse trabalho; destaca-se que, para sistemas fisicos fechados,
isto é, o sistema em que conhecemos todos os graus de liberdade, temos que o estado
1Y) = a;|0) + a|1) resultante da operacgao |¢') = U |¢), em que U é um operador
linear que atua em um espaco de dimensao finita, logo tem uma representacao matricial,
obedece a condi¢ao de normalizacao. Com isso, assegura-se que U é um operador unitario
UU' = U'U = 1. Dessa definicdo, destaca-se ainda uma importante caracteristica de
processos fisicos descritos por operadores unitarios: a reversibilidade. Como U é inversivel,
o processo inverso pode sempre ser descrito pelo operador U~! = UT. Logo, nesse trabalho,

operacoes sobre um tnico g-bit sempre serao representadas por operadores unitarios.

Ainda na analogia com a computagao classica, da mesma forma que o processamento
de bits pode ser representado a partir de um modelo de circuitos l6gicos, no qual cada
fio representa um bit e cada porta légica é representada de acordo com uma simbologia
adequada, o processamento de g-bits pode ser representado por meio de um modelo

semelhante, no qual as portas logicas passam a ser chamadas de portas quanticas.

Alguns exemplos de portas que agem em apenas um ¢-bit sdo as representadas pelas
0 1 0 —1 1 0

matrizes de Pauli 0, = coy=| . eo, =
10 0 0 -1

sdo apenas unitarias (0,00 = I), como também sdo hermitianas (o; = o) ). Essas matrizes

) . Nota-se que elas nao

tem grande importancia sob um ponto de vista tedrico em geral: da Algebra Linear temos
que todo operador hermitiano que atua num espago de dimensao 2 possui 4 parametros

reais e pode ser expandido na base {I, 0,, 0,, 0.} de matrizes de Pauli. Ha ainda outras
ﬁ<|0> (0 +10) (1] + |1) (O] = 1) (1]), a porta
S = (|0) (0] +i|1) (1]) e a porta T = (|0) (0] + €™/*|1) (1]), que sdo de fundamental

importancia na definicdo de um conjunto universal de portas, o que sera feito mais adiante.

portas relevantes, como a Hadamard H =



2 ASPECTOS GEOMETRICOS DO Q-BIT

De inicio, resgata-se a associacao entre o espago de Hilbert H definido anteriormente
e o espago C?. Da Eq. (1.1), como ag, a; € C, é natural pensar que cada estado corresponde
univocamente a um ponto de C2. Entretanto h4 uma consideracdo fisica importante que
impede isso: Dois estados quanticos que diferem apenas de uma fase global, como |¢) e
e ), 6 € R, representam o mesmo sistema fisico (1). Isso motiva a definicio de uma

classe de equivaléncia, desconsiderando, por ora, a condi¢ao de normalizagao

) ~ [¥) = ) =cly), (2.1)

com ¢ € C\{0}. Dessa forma, sdo as retas que passam pela origem em C? que estdo
associadas aos estados quanticos de maneira tal que o conjunto dessas retas definidas na
Eq. (2.1) formam o espaco projetivo complexo CP! (3). Por outro lado, esse espaco ¢
isomorfo a chamada esfera de Riemann (4), que por sua vez estd relacionada com a esfera
de raio unitario S?. Assim, deduz-se que todos os estados puros de um tinico g-bit podem

ser representados como pontos da superficie de uma esfera de raio 1 em R3.

Isso pode ser melhor visualizado a partir de uma parametrizacao conveniente, tendo

em vista a condi¢ao de normalizagao

|1)) = cos <0> |0) + €™ sin ( ) 1), (2.2)

em que 6 € [0,7] e ¢ € [0,27). A associa¢do com o sistema de coordenadas esféricas é
imediata: Cada estado |¢) representado pela Eq. (2.2) corresponde a apenas um tnico par
(0, ¢), com excegao dos estados |0), que se encontra no pélo norte, e |1), que se encontra
no pélo sul. Ambos tem valor de § bem definido — 0 e 7, respectivamente —, mas ndo um

de ¢. A essa esfera da-se o nome de esfera de Bloch.

Por outro lado, com o formalismo de operador densidade, deixa ainda mais claro
o carater geométrico intrinseco a definicao de um g-bit. Nesse sentido, para um estado

puro parametrizado, a relacao entre o operador densidade p que descreve esse sistema e o

o) el
o) ) ) e

respectivo vetor de estado [¢) é

p=1¥) (Y| = ’¢sm<
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1)

Figura 1 — Representagao grafica de uma esfera de Bloch.
Fonte: NIELSEN; CHUANG. (1)

Além disso, a relagdo entre as coordenadas cartesianas (z, y, z) e as coordenadas

esféricas (0, ¢) de um ponto na superficie da esfera de Bloch é

x = sin (0) cos (¢)
y = sin () sin (o) (2.4)
z = cos (0)

assim, a Eq. (2.3) pode ser reescrita como

1 ({142 x—1y 1
= - =—-I1+4+z0, +yo, + 20,), 2.5
P Q(x—l—iy 1—2) 2( =T Y% 2 (2:5)
ou de maneira mais compacta,
I+7-0
p=— (2.6)

em que 7 = 2t + yJ + zked =04+ oyj' + 0,k sendo um vetor formado pelas matrizes de
Pauli (2). E interessante destacar ainda um critério de identificacio da natureza do estado

dado o seu operador densidade. Dada a Eq. (2.5), tem-se

1+ 22+ (z—iy)(x+iy) + (1 — 2)* + (z + iy)(z — iy)
4

Tr(p*) =
i 2.)

2
Nessa representacao, fica clara a correspondéncia um para um existente entre
operadores densidade (estados quanticos) e vetores 7 que ligam do centro da esfera a um
ponto da sua superficie, uma vez que Tr(p?) =1 = |F] = 1. Analogamente, os pontos

internos a esfera de Bloch, ou seja, |r] < 1, também tem significado fisico, uma vez que
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eles representam estados mistos, sendo o centro a representacao do estado de maxima
mistura estatistica. Além disso, pontua-se que transformacoes unitarias ndo podem alterar

a pureza — o valor de || — de um estado.

Com efeito, é valido mostrar como as transformagoes unitarias representam rotagoes

na esfera de Bloch. Nesse sentido, o operador de rotacao pode ser definido como
Ra(60) = e~ 9012, (2.8)

de forma que 7 = (ny,n,,n,) é um vetor unitario em relacdo ao qual a rotacao é tomada
e 0 é o angulo rotacionado (5). Assim, tem-se (7 - &)? = I, o que permite reescrever a Eq.

(2.8) de uma maneira mais interessante sob o ponto de vista operacional

R;(0) = cos (g)]l —isin (g) (n- 7). (2.9)

Um exemplo em que é direta a interpretagao do operador de rotagoes agindo sobre um

q-bit é quando toma-se i = k = (0,0,1), de maneira que

—ia/2 0
R (a) = cos (g)ﬂ — i sin (g)az = (e 0 6ia/2) .

Dessa forma

[¥) = Rla) \w>=("”/2 0) @ | @

- - . (2.10)
0 cl/? €' sin <§> eHéta) gin <g>

e como fases globais nao tem significado fisico, nota-se que, de fato, o vetor |¢)') é igual ao
vetor [i) rotacionado de um angulo a em torno do eixo z. Por fim, veja que toda matriz

2 x 2 unitaria U pode ser escrita na forma

v ei'(afﬁ/%é/?) cos (%) _?im—ﬂ/m/z) _ (%)
ei(a+B/2-5/2) gin (g) ei(a+B/245/2) g (g) ’

em que «, 3, v, 0 € R. Essa relacao pode ser reescrita em termos dos operadores de rotacao:
U = e R;(B)R;(7)R;,(9), sendo essa representacao conhecida por, a menos de uma fase
global, como parametrizagao em termos dos angulos de Euler. Fisicamente, entretanto,
nao ha nenhuma justificativa para se privilegiar os eixos y e z, de forma que é possivel

escrever esse resultado de uma maneira mais geral
U = ¢ Ra(B) Ry(7) R (0), (2.11)

em que [ e m sao vetores unitarios nao paralelos. Isso evidencia como as transformacgoes
unitarias, que representam portas quanticas de um g-bit, estao diretamente relacionadas a

rotacoes.
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3 GEOMETRIA E COMPLEXIDADE

3.1 Conjunto universal de portas e o problema da complexidade

Agora, o interesse é voltado para estudar a dificuldade de implementacao de
diferentes transformagoes unitarias utilizando ferramentas oriundas da geometria diferencial.
Primeiramente, é necessario apresentar o modelo mais conhecido para quantificar essa
dificuldade e, para isso, introduz-se a nocio de conjunto universal de portas. E demonstravel
(1) que todas as portas de um g-bit e a porta CNOT — operagdo unitaria CNOT =
(10) (0] ® I 4 |1) (1] ® o) — constituem um conjunto universal, no sentido de que todas
as unitarias U que atuam em n g-bits podem ser implementadas a partir de portas desse
conjunto. Entretanto, esse resultado nao representa um ganho pratico, uma vez que boa

parte desse conjunto nao pode ser realizado de uma maneira resistente a erros (1).

A solugao é encontrar um subconjunto discreto em que isso possa ser superado,
mesmo que, em contrapartida, ndo seja mais possivel reproduzir qualquer transformacao
U com exatidao, ja que elas fazem parte de um conjunto continuo. Com efeito, o melhor
que se pode fazer agora é aproximar U com o operador V', e assim introduz-se a definicao

do erro E(U, V') entre esses dois operadores como
E(U,V) = maxy (U = V) [, (3.1)
de forma que |||¢)|| = 1/{(¢|¢) denota a norma de |¢) e [1)) € H. De forma geral, quando é

dito que um circuito quantico realiza uma operagao V que aproxima U com tolerancia
e > 0, significa que E(U, V) < € (2).

Com isso, apresenta-se o mais conhecido conjunto universal de portas, composto
por {CNOT, H, T, S}. E comum na literatura desconsiderar a porta S, uma vez que
ela pode ser construida a partir da porta 7" usando que S = T2 — a definicdo dessas
ultimas trés portas foi dada no final do Capitulo 1. Esse conjunto de forma alguma é tinico,
mas acaba sendo de grande interesse pela demonstragao da sua universalidade. No caso
de interesse desse trabalho, isto é, de sistemas compostos apenas por um unico g-bit, o
conjunto universal se resume a {H, T}, assim a universalidade desse conjunto segue do

T
fato de que a porta T representa uma rotagao de 4 ne esfera de Bloch em torno do eixo z,

T
a menos de uma fase global, enquanto HT H representa uma rotacao de 1 em torno do

eixo x. Dessa forma, a composicao dessas duas transformacoes

THTH = cos? (g)ﬂ — 4 {COS (g) (02 +02) + sin (78r>0y] sin (g)

- 0 o (T o
resulta em uma rotacao de 6, tal que cos 5] = cos” [ = |, em torno de um eixo m =

(e() () en(3)) |
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O fato de que Q ¢ um numero irracional garante que existe £ € Z tal que
RE () aproxima Rm(a),7T a € [0,27), com uma tolerdncia arbitrariamente pequena, isto é,
E(Ry(a), RE (0)) < 6, sendo § > 0 (1). Para demonstrar isso, sejam N um inteiro maior
que 27/6 e 0, € [0,27) | 6, = (r0) mod 2w, r € Z, entdo, pelo principio das casas de
pombos, existem r e s inteiros no intervalo [1, N| tal que |0, — 0] < 2w/N < §. Assumindo,
sem perca de generalidade, que r > s e como — é irracional, tem-se |6,_s| < §, com 0,_; # 0.
Assim, é garantido que 6,(,_,) cobre todo o i?ltervalo [0, 27) conforme ¢ varia, ¢ € Z, com
a maxima distancia entre dois termos sucessivos dessa sequéncia sendo ¢§. Por fim, como
HR;(0)H = Ri(#), com [ e 1 nio paralelos, e a relagio dada na Eq. (2.11) assegura que,
a menos de uma fase global, qualquer transformacao U pode ser escrita como produto de
rotagoes em relacao a eixos nao paralelos, segue de E(U,...Uy, V,..V;) < ¥, E(U;, V;)
que
E(U, REN(O)HR2(9)HRE () < e, (3.2)

com ky, ko, ks € Z e fazendo € = 61 + 2+ d3. Assim, a Eq. (3.2) demonstra a universalidade
do conjunto {H, T}, uma vez que, por construgio, os operadores R, (#) s6 dependem de

seus elementos (1).

Nesse formalismo, a ideia de complexidade estd intimamente relacionada com a
menor quantidade de portas do conjunto universal necessaria para aproximar uma dada
transformacao U com tolerdncia e. No entanto, essa definicdo carrega consigo alguns

problemas (6):

o A escolha do conjunto universal de portas é arbitraria e diferentes conjuntos podem

resultar em complexidades distintas para uma mesma transformacao.

e A escolha de um determinado valor para a tolerdncia ¢ também é arbitraria e a

complexidade resultante é extremamente sensivel ao valor de e.

o A definicao apresentada de complexidade é descontinua no sentido de que dois estados
podem estar arbitrariamente préximos na nocao de distancia induzida pelo produto

interno mas serem exponencialmente distantes em complexidade.

Deixando um pouco mais clara a no¢ao de distancia induzida pelo produto interno:
No espaco de Hilbert, é assumido que dois estados se aproximam conforme o produto
interno entre eles cresce. Nesse sentido, dois estados ortogonais estao o mais distante
possivel um do outro nesse espaco. E no espirito desses trés pontos em que se constréi uma
abordagem alternativa para o calculo de complexidade computacional, sendo a proposta
uma tentativa de explicitar matematicamente o fato de que algumas transformagoes sao
de facil execucao mesmo que os estados que ela relaciona estejam maximamente separados,

além de introduzir uma forma continua de se contabilizar complexidade (6).
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H&4 duas maneiras de se fazer isso e também ha uma forma de relaciona-las; a
primeira maneira, introduzida na Ref. (7), denominada de complexidade unitaria, diz
respeito a calcular o comprimento de geodésicas — curvas que minimizam localmente a
distancia entre dois pontos segundo a métrica do espaco — entre I e a unitaria U que se
deseja implementar na variedade diferencidvel associada ao SU(2). Destaca-se que o grupo
SU(2) é composto pelas matrizes unitarias 2 x 2 que possuem det U = 1, assim todo o
tratamento dado a transformagoes unitarias ao longo desse trabalho continua valido para
os elementos desse grupo. Além disso, como o SU(2) é um exemplo de grupo de Lie, é
possivel associar uma variedade diferenciavel a ele e assim os elementos do grupo passam
a ser vistos como pontos dessa variedade, de forma que é possivel construir a nocao de
espaco tangente localmente euclidiano (8), fundamental para a nova definigdo de distancia
de complexidade. Essa nova defini¢ao se baseia na métrica associada ao produto interno
natural desse espago (A, B) = Tr(ATB), A, B € SU(2), inserindo um fator de penalidade
que representa o fato de que nem todas as dire¢oes do espago tangente tem o mesmo grau

de dificuldade de serem percorridas.

Ja a segunda maneira, denominada complexidade de estado, estd associada a
situagdo em que, dado dois estados, o quao dificil é obter um deles partindo do outro (6).
Analogamente, isso pode ser feito introduzindo uma métrica alternativa aquela relacionada
ao produto interno no espago de Hilbert, o que permite calcular a distancia de complexidade
de estado. A relacao entre essas duas formas de quantificar complexidade segue do fato
de que a conexdo entre dois estados [¢)),|¢) € H se da pela acdo de um elemento do
subconjunto de SU(2) de todos os operadores U que satisfazem |¢)) = U |¢), logo define-se
que a complexidade de estado é igual a menor complexidade unitaria de um elemento

desse subconjunto.

3.2 Complexidade unitaria

Para iniciar a discussao sobre complexidade unitaria, é necessario conhecer um
pouco mais sobre a estrutura do grupo SU(2) e a sua respectiva variedade; primeiro,

nota-se que, da definicao, temos

—bl + Zbg ap — Z'ag

as by + b
SU(2):{(“1+“‘2 1“2), (al,ag,bl,bz)eR4ea§+ag+b§+b§:1}, (3.3)

ou seja, esse grupo é homeomorfo a S?, a esfera de raio 1 no espaco R* (9). Além disso, a sua,
algebra de Lie su(2) é formada pelas matrizes de Pauli e, por consequéncia, elas também
formam a base do espaco tangente no ponto da variedade correspondente a identidade. De
maneira mais geral, é possivel dizer que o espago tangente a qualquer ponto da variedade é
gerado por matrizes hermitianas de trago nulo, tal que as matrizes o; (i = x, y, z) também

formam uma base desse espago vetorial sobre o corpo dos reais (10). Assim, a distdncia ds
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induzida pelo produto interno entre duas unitarias U e U + dU é dada por
ds* = Tr(dUdU) = > Tr(idUU"0;)6 5 Tr(idUU  ay,). (3.4)
Jik
Como ja foi antecipado, para definir matematicamente a distancia de complexidade unitaria,
ao invés da delta de Kronecker ¢;;, introduz-se o fator de penalidade 7 tal que Z;;, sao
as componentes de um tensor simétrico, uma vez que ir de um ponto A até B deve ter
o mesmo custo de ir de B até A, e positivo-definido, ja que a nocao de distancia esta
associada a valores nao negativos (6). Dessa forma, a distdncia de complexidade ds;; entre
as duas unitarias consideradas anteriormente aparece como
dsty = > Tr(idUU'o;) Ty Te(idUU oy, (3.5)
Jik
por outro lado, é possivel adicionar a hipotese de que, no caso de estudo desse trabalho,
T;i, esté escrito numa base tal que sua representagao ¢ diagonal. Assim, a Eq. (3.5) assume

a forma

ds} = T, Tr(idUU0,)* + I, Tr(idUU 0,)* + Z.. Tr(idUU o, )2 (3.6)

A esta altura, torna-se interessante destacar uma intuicao fisica para os fatores de pena-
lidade: mostrou-se, no Capitulo 2, como as matrizes de Pauli estdao diretamente ligadas
a rotagoes em relacdo aos trés eixos cartesianos na esfera de Bloch. De fato, os valores
atribuidos a Z,,, Z,, e I, representam matematicamente o quao dificil ¢ implementar

uma unitaria que atua como um rotacao em torno dos eixos x, y e z, respectivamente.

Agora, inicia-se uma andlise mais detalhada para o caso dos tensores Z;; = 0;;
e Ly, =1, = 1, com I, arbitrario. Para isso, introduz-se um sistema de coordenadas
utilizando a parametrizacao em termos dos angulos de Tait-Bryan para os elementos de

SU(2), de forma que U é escrito como
U — 67,'9202 eiGycry 6759101 ) (37)

Além disso, para evitar carregar fatores numéricos extra, considera-se uma normalizacao

para o traco tal que Tr(I) = 1 e, por consequéncia, Tr(o;0,) = 0;;.
10) Iij = (5,']‘2
Substituindo esses fatores e a Eq. (3.7) na Eq. (3.6), chega-se em
dsg; = db + db;, + db? + 2 sin(26,,)d6,d6., (3.8)

que é justamente a distancia entre pontos arbitrariamente proximos em uma esfera
S? em coordenadas nao convencionais. O resultado de forma alguma é uma surpresa:
a métrica aplica a mesma penalidade em todas as diregoes, ou seja, ela recupera o
caso da distancia induzida pelo produto interno. Destaca-se ainda que, conforme

esperado, a métrica exprime o cardter homogéneo e isotrépico do espaco S?.



17

2°) Iy =1, = 1:

Substituindo esses novos fatores na Eq. (3.6), obtém-se

ds?, = cos?(20,)d6? + d9§ + Z..(d, + sin(26,)dd,)*

(3.9)
= (cos®(20,) + L. sin*(26,))d0> + df; + I..db7 + 2Z.. sin(26,)d6,d6..

Assim como no caso anterior, essas nao sao as coordenadas mais usuais para represen-
tar essa métrica, o que pode dificultar a identificagdo, entretanto ela esta associada a
chamada esfera de Berger — a esfera de Berger é um espaco riemanniano homogéneo
difeomorfo a S3?, de tal maneira que sua métrica pode ser obtida deformando a
métrica usual de S* (11). Por consequéncia, a métrica que aparece na Eq. (3.9)

continua sendo homogénea, mas nao ¢ mais isotropica.

E interessante pontuar que é possivel encontrar uma expressio analitica para a
métrica de complexidade g;; tal que dsj, = g;;d0"df?, utilizando a convencdo de Einstein,
no caso geral em que todos os fatores de penalidade assumem valores arbitrarios (6).
Essa métrica é homogénea e completamente anisotropica. Para investigar mais a fundo
a geometria dos dois casos estudados, é necessario introduzir um parametro geométrico
importante: o chamado escalar de Ricci R, que atribui um valor real para cada ponto do
espaco associado com a curvatura nele, com esse valor dependendo apenas da métrica e de

suas derivadas na vizinhanca desse ponto.

Para a 1° situacao, segue da definicao que R = 6 em todos os pontos do espago, o
que era esperado, uma vez que n-esferas tem curvatura uniforme e positiva. Isso garante
também que uma dada familia de geodésicas em S? tende a convergir. Por outro lado, para
a 2° situacdo, o escalar de Ricci se torna uma funcao de Z,, tal que R =8 — 27, ., ou seja,
a curvatura desse espago continua sendo uniforme, mas para valores de Z,, > 4 ela nao é

mais positiva. Nesse caso, uma familia de geodésicas tende a divergir (12).

3.3 Complexidade de estado

Agora a discussao sera centrada no conceito de complexidade de estado. Foi
mostrado, no Capitulo 2, que os estados puros de um tinico g-bit sdo topologicamente uma
S? e a essa 2-esfera dé-se o nome de esfera de Bloch, de forma que h uma relacao univoca
entre um estado |¢)) € H e um vetor unitario 1E € R3. Essa relacdo pode ser descrita pelo
mapa

—

=l a¢), (3.10)

lembrando que ¢ = 0,1 + 0,) + 0.k. Dessa maneira, é possivel definir a relagao entre o
produto interno nesses dois espagos como sendo

1‘1‘?;1'1;2 «

i) = =2 = cos? (5, (3.11)
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em que « é o angulo entre os vetores Jl e Jg Essa convencao é utilizada para que estados
ortogonais, (1s|11) = 0, estejam associados aos pontos antipodais da esfera de Bloch,

a = T.

Com efeito, para encontrar a métrica associada a complexidade de estado, é
necessario encontrar a distancia ds entre dois estados [¢)) e [¢) + di) arbitrariamente
proximos e inserir os fatores de penalidade correspondentes. Seja J + d@g o vetor associado
a [ + dip), nota-se que a condi¢ao dada na Eq. (3.11) atribui uma relagao entre @Z e di/_;
para que o estado considerado seja normalizado. Tomando a aproximacgao em primeira
ordem de dz/j

(@ + dyly +dp)* =1 +9-d) = ¢-dd =0. (3.12)
Por conseguinte, assume-se que o estado ¢ + di) pode ser obtido de |¢) a partir de uma
rotacao infinitesimal em torno de um eixo 7. No entanto, pela definicao de rotacoes, é
necessario ter 7 - d1/7 = 0, que é satisfeita por uma familia de vetores unitarios 7" que estao
contidos no plano perpendicular a d@/?. Logo
ARG
i x 4 + By

em que § € R é um pardmetro cuja determinagao esta relacionado com a escolha do

(3.13)

eixo de rotacao que minimiza o angulo percorrido para ir de J a 1; + dJ. Pontua-se a
associacao direta entre essa descricao e a de escolher o elemento U, do subconjunto de
todas as transformagoes unitarias que satisfazem |1 + di)) = U [}, que possui a menor

complexidade unitéria, feita anteriormente. Por outro lado, adaptando a Eq. (2.8), é

Figura 2 — Exemplos de vetores unitérios que satisfazem a Eq. (3.13).
Fonte: BROWN; SUSSKIND. (6)

possivel descrever essa rotacgado em termos de uma série de Taylor que, diferenciando e
— 1 — — -,
tomando apenas a primeira ordem em di, é escrita como dU = —i(dy x ) + f) - &.
Desconsiderando, em primeira andlise, os fatores de penalidade, a Eq. (3.4) d4 que
(dy x ¢+ BY) - (dy x  + BY) _ dip-dyp + 2
4 4 ’

de forma que é direta a conclusdo de que f = 0 minimiza a Eq. (3.14), resultando na

ds® = (3.14)

métrica usual em S? com um fator 4 adicional: 4ds* = df? + sin? (§)d¢?. Isso implica no
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fato de que, nesse caso, o vetor 7 o qual esta associado ao menor angulo de rotagao possivel

¢é aquele que ¢é perpendicular tanto a d@/? quanto a @Zj, ou seja

_dj-dp
i

Agora, considera-se um fator de penalidade representado pelo tensor Z;; = d;; +

da® — do?, =di-dy. (3.15)

man

(Z..—1)p;p;. Fisicamente esse fator penaliza apenas rotacoes em relagao a um eixo arbitrario
7 unitério. Nesse sentido, define-se um produto interno @%b = @-b+ (Z,. — 1)(@-p)(b- p) em
R3 e que leva em consideragao a penalizagao. Tomando por base a Eq. (3.14), a distancia

de complexidade de estado dsg é escrita como

4ds% = (d x & + B * (d x & + )

e tdd gy PR @O L (@ x )] (316)
:d d - e -+ + —— .
(A > ) = (d) x ) T )8+ =5

Note que, escolhendo o valor de 5 que minimiza a equagao acima, o tltimo termo dessa

expressao vai a zero. Usando um sistema de coordenadas polares {6, ¢} tal que p estd
alinhado com o poélo norte de S? e, consequentemente, Z,, = Z,, = 1, a Eq. (3.16) é

reescrita como

4ds3, = A - dif + (Z.. — 1)[d1/)_‘- (1) x p))2
(Z.. = (& §)* +1 -
Z..sin? (0) "

_ 02
do™+ T, cos? (0) + sin” (6)

e é direta a verificacao de que Z,, = 1 faz que dsg = ds. Analogamente ao que foi exposto no
caso da complexidade unitaria, é possivel encontrar uma expressao analitica para a métrica
de complexidade de estado no caso geral em que fatores de penalidade assumem valores
arbitrarios (6). Como métricas também podem ser escritas na representacao matricial,
pontua-se que, no primeiro caso, ela é representada por uma matriz 3 x 3, enquanto no

segundo ela ¢é representada por uma 2 x 2.

Ademais, a relacao entre a distancia de complexidade dsg e o angulo de rotacao
da correspondente pode ser obtida utilizando a nog¢ao de produto interno penalizado e se
apresenta como

4dsy = (14 (Z.. — 1)(p- 7)?)de’. (3.18)

Observa-se que a distancia de complexidade passa a ser uma funcao tanto do fator Z,,

quanto do angulo entre p'e 7. Substituindo a Eq. (3.15) nessa expressao, tem-se

2 1+(Izz_1)(ﬁ'77)2

4ds?, - i) - di. (3.19)
W x 7

A Eq. (3.19) torna clara a interpretagao do eixo 7 que minimiza a distancia de complexidade
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Fo

Figura 3 — Exemplo de 7 ideal para os vetores p e zZ? mostrados.
Fonte: BROWN; SUSSKIND. (6)

de estado para o caso de estudo: E necessério que a escolha reduza tanto o dngulo de
rotagdo da, isso é feito fazendo o produto escalar (15 - 7) ser o mais préximo possivel de 0,
quanto a penalizacao na direcao do eixo de rotacao adotado, isso é feito fazendo o produto
escalar (p'- ) ser o mais préximo possivel de 0. Note que ja era possivel obter o vetor
(Z. = D7~ (d x D)](F-¥)

1+ (Z.. — (P )
porém o tratamento posterior é fundamental para compreender o significado geométrico

7 ideal desde a Eq. (3.16), que acaba resultando em = —

Y

desse resultado.

E interessante observar como o vetor ideal 7 se comporta conforme varia-se o valor
do fator de penalizacao Z,.. No caso em que Z,, = 1, recupera-se o caso sem penalizacao e
tem-se 1; -7 =0, enquanto no caso em que Z,, — 0o, a Eq. (3.19) mostra que é necessario
ter p- 7= 0. Para valores intermediarios de Z,.,, espera-se que 7~ esteja contido na regiao

entre os dois planos exibidos na Fig. 3.

Por fim, calcula-se o escalar de Ricci para a métrica descrita na Eq. (3.17)

SIzz[l B Q(Izz - 1) cos” (0)]

R= (Z.. cos? (0) + sin? (0))?

(3.20)

3
Para Z,, < 5 a curvatura é positiva em todo o espaco de Hilbert considerado. Mais do
que isso, é possivel analisar o efeito da penalizagdo sob a 6tica de deformacao da esfera de

3
Bloch, no sentido de que, para Z,, < 1, ela se torna prolata, enquanto para 1 < Z,, < 3

ela se torna oblata. Ja para Z,, > 2, a curvatura passa a ser negativa nos pélos, cai até
um valor minimo e depois volta a crescer nas proximidades do equador, chegando a um
valor maximo de R = 8Z,, em 0 = g Topologicamente, H passa a ser visto como dois
discos negativamente curvados, o que dificulta a representacao grafica em R3, conectados
por uma regiao de curvatura positiva no centro.

Analisando ainda o caso em que Z,, — oo, conclui-se que, da Eq. (3.20), R =

16

~ cos? (6)

E interessante pontuar também que, embora haja muitas semelhancas no comportamento

T
, exceto para regioes proximas de 6 = 5 onde R colapsa na funcao delta positiva.
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I,=05 I=145 Iy =5

L L L L L L 8 L L L L L L a
05 1.0 15 20 25 3.0 05 1.0 15 2.0 25 30

Figura 4 — R(0) para os esferoides prolato, oblato e a regido com curvatura negativa.
Fonte: Elaborada pelo autor.

das complexidades tanto unitaria quanto de estado, no caso da métrica na Eq. (3.9), a
curvatura correspondente é uniforme e diverge em todo espago no limite em que Z,, — oo,
enquanto na métrica exibida na Eq. (3.16) a curvatura deixa de ser constante e diverge

apenas na regiao equatorial nesse mesmo limite.

3.4 Sistemas de miultiplos g-bits

E possivel generalizar boa parte das ideias expostas nas se¢oes anteriores, sobretudo
as que sao relacionadas a geometria de complexidade unitaria, para sistemas compostos por
N > 1 g-bits. Nesse sentido, a variedade diferenciavel considerada passa a ser a associada
ao SU(2Y), de forma que uma base completa para seu espago tangente é dada pelas
4N — 1 matrizes de Pauli generalizadas, tal como o; = 01, X ® ... ® oy, onde cada
termo desse produto tensorial é dado por uma matriz de Pauli o; (i = z, y, z) ou pela
identidade I, excluindo-se o elemento I} ® Iy ® ... ® Iy. Por conseguinte, as relacoes (3.4)
e (3.5) permanecem vélidas, desde que sejam feitas as substituicoes o; — oy e Z;; — I;,.
Destaca-se que o fator de penalidade Z;; continua representando matematicamente o
quao dificil é seguir por uma dada direcao no espago tangente, mas agora direcoes dificeis
passam a estar associadas a elementos da base o; que tocam muitos g-bits, ou seja, quanto

mais termos de um q-bit diferentes da identidade o; possuir, maior sera o valor de Z;;.

Em geral, o caso de N g-bits ¢ melhor abordado como um problema de controle
geométrico, como ¢é feito nas Refs. (7) e (10), em que a tarefa de encontrar o menor
caminho entre I e uma unitaria de interesse U, segundo uma métrica de complexidade
definida a partir de um tensor Z;;, é andloga a de encontrar uma hamiltoniana H (t), que
pode ser expandida em termos das matrizes de Pauli generalizadas, dependente do tempo,

que gera U em um determinado tempo 7' segundo a equagao de Schrodinger

‘gtf — —iH(®U(1), U(0) =1, U(T) = U, (3.21)

fazendo i = 1 e tal que H(t) minimiza o funcional custo total d([U]) = [ dtF[H(t)] dada
uma fungao custo F[H]|. Note que, nessa abordagem, a funcao custo define a geometria no
espaco SU(2"), e ela pode ser tomada tal que aplica custo 1 nas componentes de H (t) que

sao 2-local — uma componente é dita k-local se ela esta associada a um elemento de base
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or no qual ha, no maximo, k£ termos de um g-bit ¢; no produto tensorial que o compoe —

e aplica um custo p nas demais componentes.

Esse custo p é arbitrario, mas é interessante que ele cresca exponencialmente com
N, uma vez que isso reflete que a complexidade unitaria para esses sistemas pode ser
exponencialmente grande. Essa é uma caracteristica exclusiva da geometria de complexidade
de N g-bits (mesmo no regime em que Z,, — oo, a complexidade em sistemas de um tinico
g-bit permanece limitada) e estd relacionada ao fato de que a maior parte das diregoes do
espaco tangente sao faceis de serem percorridas no caso de um g-bit, mais especificamente
2 de 3 diregoes, ja que Z,, = Z,, = 1, enquanto no caso de multiplos g-bits ha muito

menos diregoes faceis do que dificeis.

Por outro lado, sistemas de um ¢-bit com a métrica associada a esfera de Berger
ainda refletem algumas caracteristicas da complexidade de N g-bits, como o fato de
que, em ambos os casos, o volume de uma dada regiao e a distancia média entre dois
pontos no espaco de unitarias correspondente crescem conforme os fatores de penalidade
também crescem; no geral, afirma-se que sistemas com um tnico g-bit sdo ineficazes para
identificar como certas propriedades escalam com o tamanho do sistema. Para o caso de
multiplos g-bits, a possibilidade de distinguir grandezas que crescem polinomialmente das
que crescem exponencialmente permite compreender um padrao de complexidade que é

andlogo a evolucdo da entropia de um sistema classico com 2% graus de liberdade (13).

Por fim, toma-se a seguinte situacao: considere o conjunto de todas as unitarias de
SU(2Y) com complexidade inferior a um certo valor. Para valores baixos o suficiente, a
topologia desse conjunto é dada por uma esfera deformada, no sentido de que as direcoes
faceis sao alongadas enquanto as dificeis sao encurtadas. Entretanto, conforme o valor
de complexidade maxima que define o conjunto cresce, essa regiao se torna muito mais
intrincada, com estruturas (4" — 1)-dimensionais similares a ramos se enrolando em torno

principalmente das diregoes faceis.
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4 CONCLUSAO

O objetivo desse trabalho foi apresentar caracteristicas gerais acerca da geometria
de g-bits, iniciando da defini¢do tradicional desses sistemas quanticos de dois niveis e
chegando até uma proposta alternativa para a analise de complexidade computacional
quantica, algo que é fundamental para o desenvolvimento de novos algoritmos e para

avaliar a eficiéncia de algoritmos ja estabelecidos em diferentes cenarios.

Primeiramente, definidas as nogoes basicas de vetores de estado, operador densidade
e transformagoes unitarias, mostrou-se como esses conceitos se relacionam sob um ponto
de vista geométrico, chegando a chamada esfera de Bloch. Foi possivel visualizar como
pontos da superficie dessa esfera estao univocamente associados a estados puros de tinico
g-bit e o formalismo de operador densidade permite relacionar também os pontos internos
dessa esfera com os estados mistos. Além disso, pontuou-se como transformagcoes unitarias
podem ser vistas como rotagoes na esfera de Bloch, construcao fundamental no estudo de

complexidade desenvolvido no restante do trabalho.

Assim, introduziu-se esse estudo exibindo o modelo mais conhecido para a analise
de complexidade, utilizando a no¢ao de conjunto universal de portas. Listou-se, entao,
alguns problemas intrinsecos a essa definicao e, desejando-se encontrar uma proposta
alternativa, é apresentado o modelo de geometria de complexidade. Nele, a contagem
discreta de portas quanticas da lugar a distancia percorrida ao longo de uma geodésica
no espago SU(2), para o caso de um ¢-bit. E discutido tanto o conceito de complexidade
unitaria quanto o de complexidade de estado, evidenciando uma relacao direta entre
eles. Ademais, investigou-se mais a fundo o comportamento da geometria de alguns casos
especiais, como o caso em que Z,, > T,, = Z,,, uma vez que ¢ possivel compara-lo com o

comportamento esperado para sistemas de multiplos g-bits.

Nesse sentido, mostrou-se ainda as principais caracteristicas da geometria de com-
plexidade de sistemas de N g-bits que a sua analoga para um tnico g-bit permite observar
e quais ela falha em apresentar, pontuando-se alguns exemplos mais concretos. A geometria
de complexidade, apesar de estar intrinsicamente relacionada a informagdo quantica, tem
potencial para ser um conceito mais fundamental: Na Ref. (6), os autores citam a aparente
relagdo entre ela e a conjectura de complexidade hologréfica, na correspondéncia AdS/CFT,
e a possibilidade de utilizar esse conceito no estudo de termodinamica estatistica, impli-
cando que ela pode vim a ser uma proposta de grande interesse para a fisica tedrica como

um todo.
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